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STEADY-STATE HEAT CONDUCTION FOR A REGION ROUNDED BY A SPHERE
AND A TANGENT PLANE

B. A, Vasil'ev UDC 536.24.01:517.946

Ir is shown that the prchblem of potential theory for a half-space with a spherical
cavity with boundary conditions of the first and third kinds reduces to an ordi-~
nary differential equation which can be solved efficiently by numerical methods.

It is well known that boundary conditions of the third kind prevent the separation of
variables in the general case for boundary~value problems of potential theory. However, as
shown in [1, 2], bipolar coordinates in a plane can be used to solve certain problems involv-
ing off-center cylinders with a boundary condition of the third kind on the surface of one of
the cylinders. 1In the case of contacting spheres, a system of degenerate bispherical coordi-
nates can be used [31, in which the Fourier-Bessel integral transform method reduces the prob-
lem to an ordinary differential equation for the transform. We consider a similar case, when
one of the spheres becomes a half-space.

Statement of the Problem. We consider the steady-state temperature distribution between
a sphere and a tangent plane with the boundary conditions such that the sphere is at 3 given
constant temperature and the plane is cooled according to Newton's law by a medium at zero
temperature (Fig. 1).

In a system of degenerate bispherical coxodinates (u, R, ¥ ) relared to cylindrical coor-
cinates (z, ¢, @) by

2Ri
o+ ip 1)
0L, 0o, —a o,

z-+ip=

the equation of a sphere of radius R becomes 8 = 1, and the equation of the tangent plaune
will be B = 0. Tor the case of rotational symmetry, the problem reduces to the solution of

Laplace's equatiomn in the form
8 ( o jﬁ: d a aT
a? - B% O (

—-—) —0, Bp<l, 0<a< oo,

+___, e ———————
of \o®+p* 0B, (2)

3

Fig. 1. Half-space with a spherical
cavity.
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subject to the boundary condition on the plane
oT

—a? -55——;~HTI(5=0:0, 0<{a < oo, (3)
the condition that the temperature be a constant on the sphere
Tlpe1 =Ty 0K 2L 00, (4)
and the condition at infinity
Jdim T(e; §)=0, (5)
Vaifpe—0

where T = T(a; B) is the temperature, T, is the given constant temperature on the sphere,
H = 2hR is the Biot number, and h is a positive constant.

We look for a solution of (2) through (5) in the form [3]
TZ T]. +T2) (6)

where

Ty=T, Va1 p2 y exp (— x) chpx Jo (ax) dx;
b chx

x

P N Tl C sh 1
nﬁfwahﬂ'\ﬂﬁ—ﬁ—lfhmﬂm
5 chx
and Jo(ax) is Bessel's function of order zero.
Substituting (6) in boundary condition (3), we obtain an integral equation for the un-~
known function y(x):

[ 50 lox - Hthx) Jy (@) dr = H | f%ﬂ./o (o) dx, O<a< co. (7
0 h) chx

The integral equation (7) can be transformed to an ordinary differential equation with the
help of the identity [4] :

. T d ;od
o | 5y () Jo(an) ds— — | = (L—y—) Jo(ax)dr, 0<a<oco. (8)
b 6’ ax dx
This identity is true for any continuous, twice-differentiable function on the interval (0, «)

which is bounded and continuous at the point x = 0 and which decays sufficiently rapidly at
infinity. Substituting (8) into (7), we have

d { dy exp (— x)
v x = | =Hythx— H ———"—, 0<x <<, 9
de \ dx ) y chx &
subject to the conditions
y(x)=0(1), x—0, lm y(x)=0. (10)

X~
The solution of (9) can be found by numerical methods, but it is necessary to transform (10)
to an initial condition, This can be done using the general theory of second-order linear
differential equations [5].

Solution of the Ordinary Differential Equation. We consider the solution of the corre-
sponding homogeneous equation

d [y

; - ::Hythx, O<x<oo. (11)
dx \  dx

The point x = 0 is a regular singular point of (11). A particular solution of (11) can then
be written in series form [5]

oL T
U (x) - }11 anlzni h’i< '5‘ . (12)
n=1
The coefficients {a,} are determined successively from the recurrence relation

n
4n2%a, = % Guan, n=1, 2, ..., (13)

a
JL
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Fig. 2. Temperature distribution on the
plane z = 0 (T, is the temperature on
the surface of the sphere): 1) H = 0.5;
2) H=1.0; 3) H= 2.0; 4) H = 4.0.

where
22k (22}&__. 1) th
(2R

gp=H

*

with ao = 1, and By are the Bernoulli numbers.

Solution (12) also satisfies a Volterra integral equation [5]
X
yl(x)=l+Hj y, () theln (-ti) dt, 0 x < co. (14)
] Y

Equation (14) can be solved numerically or by the method of successive approximations for

x > n/2. It also follows from (14) that (12) monotonically increases on (0, ») and has the
asymptotic form .
B =0{x * exp2VHx), x—oco. (15)
The numerical solution of (12) on (0, =) can be done using the method of Adams and Sht&rmer
[5]. If a solution y,(x) is known, then a second solution y2(x) can be found by quadratures
from the condition [4]

N Y 1
W w)=| , |=——> (16)
Y, Y, x
where W(yy; y2) is the Wronskian determinant.
The solution y;(x) can be written in the form
U (9) = 9, () S an
2 jty%(t)’ '
Y ‘

Solution (17) has the following asymptotic forms for large and small values of the argument
Xx:

1

y2(x) = O{x‘T exp (—*—2 Vm)}, X =00,

%m=0(mlg,xaﬂ
X

(18)

Using the method of variation of parameters, we obtain a particular solution of the nonhomo-
geneous equation (9) in the form

X

H ) Hexp(—1?)

exp(—1 Yo () dt + g5 (%) [ Hh)dl, 0<x< . (19)
cht J chi

y@=nw |
R x 0

From (15) and (18) we have that (19) satisfies condition (10), while (12) and (17) do not

satisfy this condition; hence (19) in the unique solution. Also from (12), (15), and (18)

it follows that (19) satisfies the more stringent conditions that the identity (8) be applic-

able.
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As an example, in Fig. 2 we show the temperature distribution on the plane z = 0 for
HE{O.S,I,Z, 4}. The calculations were done with the Adams and Shtérmer method on the ES-
1045 computer.

Finally, similar results can be obtained for the case when the boundary condition (4)
depends on the angleg .
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